A note on the 2-part of K2(oF) for totally real number fields F
نویسندگان
چکیده
منابع مشابه
On Shintani’s ray class invariant for totally real number fields
We introduce a ray class invariant X(C) for a totally real field, following Shintani’s work in the real quadratic case. We prove a factorization formula X(C) = X1(C) · · ·Xn(C) where each Xi(C) corresponds to a real place (Theorem 3.5). Although this factorization depends a priori on some choices (especially on a cone decomposition), we can show that it is actually independent of these choices ...
متن کاملPerfect Forms over Totally Real Number Fields
A rational positive-definite quadratic form is perfect if it can be reconstructed from the knowledge of its minimal nonzero value m and the finite set of integral vectors v such that f(v) = m. This concept was introduced by Voronöı and later generalized by Koecher to arbitrary number fields. One knows that up to a natural “change of variables” equivalence, there are only finitely many perfect f...
متن کاملA Note on the Pythagoras Number of Real Function Fields
We show that the pythagoras number of a real function field is strictly larger than its transcendence degree. In the purely transcendental case, this is a well known consequence of the Cassels-Pfister Theorem.
متن کاملComputing a Lower Bound for the Canonical Height on Elliptic Curves over Totally Real Number Fields
Computing a lower bound for the canonical height is a crucial step in determining a Mordell–Weil basis of an elliptic curve. This paper presents a new algorithm for computing such lower bound, which can be applied to any elliptic curves over totally real number fields. The algorithm is illustrated via some examples.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1987
ISSN: 0021-8693
DOI: 10.1016/0021-8693(87)90091-3